If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2+48t=160
We move all terms to the left:
16t^2+48t-(160)=0
a = 16; b = 48; c = -160;
Δ = b2-4ac
Δ = 482-4·16·(-160)
Δ = 12544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{12544}=112$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-112}{2*16}=\frac{-160}{32} =-5 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+112}{2*16}=\frac{64}{32} =2 $
| 8(-5q+4)= | | 2y+3y-18=y+50 | | 34+z+19=3z+31 | | -7z+2z-8-5= | | c+c=c+37 | | 7-5f-3f= | | x+7+x+5=x+47 | | c+c-5=c+31 | | y+y-41=y+31 | | y+y-15=y+36 | | 8(-6r-4)= | | -2-7+3r+6r= | | 8x+6=5x-11 | | -5p-6(3p+9)= | | -7d+9-4d+2= | | 6w+12=5w+15 | | 90+x÷2=3x | | 15x-4=9x+12 | | 9p-7(-8+5p)= | | 4x+8=8x+17 | | 3x=90+x÷2 | | 5x+4-(3x+6)=10x+(18-4x) | | 12x+9=7x-10 | | 5x/2-2=18 | | 12=-4q | | 10x+4=6x-7 | | b+42+2b+47=15b | | 1q=-6 | | w+37+w+21=13w-41 | | z+20+z+25=5z-30 | | 5y+8-11=9+3y | | R^2-7r-9=0 |